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On the Diffusion of Tides into Permeable Rock of Finite Depth
R. ,Co DiPrimg
Harvard University

1. Introduction

It has been observed in the irrigation wells of the Hawaiian Islands
that the water-level fluctuations have frequency compcnents cefrespondiﬁg to those
of the ocean tides (i]o This phenomenon was analyzed by Carrier and Munk, [Z],
assumiﬁé the observed ground-water fluctuations to represent a diffusive transe
mission of the tidal disturbances through the poroﬁs volcanic structure of the
island. The purpose of the investigation was to use‘the results in estimating
the permeability of the porous medium,

In [?] it was assumed that the porous medium was infinitely deep. In
actﬁal fact, however, there will be an essehfially impenetrable bounding surface
(see Fig; 1), This paper is concerned with the analysis of the same problem
treated in [2] s but taking account of the bounding bottom surface. Numerical
computations are carried out for several values of the dimensionless depth. Also
the limiting case of shallow water theory is studied, Using the results of the
infinite depth, shallow depth, and finite depth theory it is possible from the
graphs given in Figs, 2 and 3 to estimate the émplitude and phase lag in the
fluctuations of the ground-water as a function of the distance inland for various
values of the dimensionless depth. It is found that for the values of the
physical pérameters which are probabiy of most concern the infinite depth theory
gives satisfactory results in the region‘of ;ntereéto

2o Formulation of the Problem

Although the formulation and the first part of the analysis of this
problem follows quite closely that related in [2) it is convenient, for the sake |

of completeness; to repeat part of that work here. As the water in the ocean
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bounded by Oy' and OB (see Fig., 1) rises and falls asboub its mean level 04,
the pressure on the line OB varies. Corresponding to this periodic change in
pressure on 0B we can expect periodiec fluctuations in the free surface of the
ground-water, i.e. Ox'.
The equationé governing the motion of the fluid in the porous medium

are the conservation of mass

div (p¥) = = 2 (ep)s (261)

- - at - .

and Darcy's law which replaces the conservation of momentum law (see Eﬂ)g

¥ =~ (k/p) grad (p = p_)- (242)
Here p and up are the density and thé viscosity of the fluids & and k are
the porosity and the permeability of the materialg’%: is the velocity with
components u and v in the x' and y' directiony p 1is the gauge pressures
P, = = pogy' is the pressure whén the fléid motion is zerog po is the mean
densitys an& subseript notation indicates partial differentiation. The simple
compressibility law used by Carrier and Munk is

po= posb{; +5 (p = po)} s (2.3)
where 5 is essentially (poc?)""l with ¢ the speed of sound in the fluid. It
snould be pointed out that Eq. (2.2) says that the pressure gradient is .
proportional to a velocity rathér tﬁan an acceleration as in the Navier-Stokes
equation, As a result we will obtain finally an equation of the diffusion type
rather than‘a wave equabiong hence the free surface amplitude will decay in x!.

The boundary conditions expressed in terms of the pressure p are

p = 0, on the free surface (2.Lha)
. doot

P=-pgigg* e on OB (2.1m)

3p -p )yt =0 on y' = ~H (2.hc)

where H is the depth of the porous medium. The last boundary condition results
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from the requirement that the normal component of velocity be zero on the
impenetrable bottom. The pzjessure q_l is of cpurse directly proportional to the
tidal-wave amplitude,

If we let q = p - p_, and combine Egs. (2.1), (2.2) and (2.3) we

obtain

. Bos

A T q’b, (205)

where A is the Laplacian operator. If we denote by m(x',t) the y?
coordinate of the free surface, Eq. (2.4a) implies q(x?'yn,t) = P,ENs but on the

free surface 7, = v/é , hence using Eq. (2.2) our boundary condition (2.4a) may
be expressed as

pogk
q'b * ._05%.— qy' =0 on yf =21, X , 0. (2.6&)

Actually as in the usual linear theory of water waves this boundary condition is
to be applied on y = O. The boundary conditions (2.4b) and (2.kc) may be
written as ‘
q (on 0B) = qjei®t, (2.6b)
qy' = O,‘y' = = H, (2.6c)
We shall only solve this problem-in the c;ase that the line OB occupies the
half-line y = 0, x < 0. That is we take § = 0° (see Fig. 1). Actually this
is fairly realistic since Z is probably of the or&er of 59 or so.
Finally if we introduce the following dimensionless variables
T= bty x=x'/Ly y=y'/Ly; h = H/L , }
L= (pogk)/(ubow), e = fpigzka)/(uﬂéow), q= qlfﬂ(x.y)ei‘*’JG ; (.1

we obtain

AP = ie@ =0, o (2.8)

with the boundary conditions
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Yo*i¢=0,y=20,x20, (2.9a)
$=1,5y=0,x<0, (2.9b)
¢y=09y=whs-m<x<w. (2.9¢)

=l
The free surface w(x,t) is (pog) q(xs056) but from Eqs. (2.7)
q = q ¢ (%) exp (iwt) so

n(x,t) = ?_].-. ¢(x,o)el(°t x »= 0. (2.10)
PoB |

So the problem of determining the free surface is exactly that of determining
@ (x50)s The combination of parameters ql/pog is the maximum height of the
tidal-wave measured from y! = 0.

Before proceeding-to a solution of the problem defined by Eqs. (2.8)
and (2,9) it is perhaps worth-while to mention briefly the size of the
parameters which appear in this problem. We have p./po = 0(10°2cm2/sec),
k= O(leomécm?), 6 = 0(.20), g = 980 cm/sec2, and o for a twenty four hour
tide is 2n/2L hours, hence L = 0(1000 ft), Since ¢ is 0(5000 ft/sec)
ior water, & is a very small numbefs o(lo‘h), Finally, a reasonable value for
the depth of the ocean is about three miles 50 ﬁ may be as large as 15.

3o Shallow Water Theory

Before considering the general problem given by Egs. (2.8) and (2.9)
let us lock at the limiting case in which the depth H is small enough that we
can neglect variations in the y! direction, and also set v & O, Then
u(x',4) represents an averaged éelociﬂy across the section ~H<y!<0. If we
assume incompressibility, i.e. 5§ = 0, the conservation of mass eéuation
appropriate to this situation is‘

HooUyr = = £58My - (3.1)
Darcy's equation reduces to )

et S
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Since there is no variation in the y dz.rectlon our condltn.on. that q = p g'n

on the free surface must hold throughout the strip --H<y'<Q, x » 0, Using this

and Egs. (3.1) and (3.2) we obtain

6
qxnxﬂ h %—27}? a =0, x>0 (3.3)
o .

The condition that q = q, exp (iaot) for x £ 0 is now applied at x = O3
consequently we set q = qlqo (x?) exp (iwt)s Then Eq. {3.3) becomes
B 1L @= 0, x 20 (3o14)
An appropriate solution of Eq. (3:L4) satisfying a finiteness condition at
infinity is
y _ ) i eﬁ(i/@?l/zxf
Hence

(2HL)1/2 : { wb - (—2&-)1/2}

«ﬂ(xnst) = (ql/pog) € (3.5&)

WX i fot - X
= (q,/pg) e Y2 {c? (2h)1/ 2} . (3.5b)

Actually, in order for this theory to be valid not only must the wave
length of the disturbance be large compared to H as in the usual shallow water
theory but also H must be small compared to the other natural length scale, L,
which appears in the problem, i.e, h. must be small. This can be seen by an
examination of the behaviour of the solution of the genéral problem, This is
done in Sec. 5 where it is found that for h < l/h we can expecht the shallow
water theory to be quite accurate, The amplitude and phase lag; of pogn(x,t)/ql
are plotted in Figs. 2 and 3 as a function of x for h = 1/k.

Lo Solution of the Problem

To solve the problem defined by Eqs. (2.8) and (2.9) we shall use the

method of Fourier transforms and the Wiener-Hopf technique. Let

il
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P(Esy) = fe-iéxgo(x,y)dX- (L)
Then the transform of Eq. (2.8) is

o~ 2 4 18)P = 0. (Le2)

A solution of this equation satisfying the boundary condition (2.9¢) is

% (¢,7) = A(€) cosh {(y + n)c}, (Le3)

1l/2 :
where C = (£ 2 4 ig) / and A( %) is to be determined by satisfying the

boundary conditions.

and

et
lim eax x<0
EICX) = fa=0 ’ (hfha)
0 x>0
g (x)= |0 =0, (holib)
“ ¥(x,0) x2=0 :

£(x) = qﬁy(;c,o) + 19(x,0)e (Le5)

It is clear that @ (x;0) = gl(x) - gz(xj; hence

#(£50) = A(£) cosh-Ch = El(é) +'g'2( £)

-, S (hoé)
- (a-18)7 4 E(E)
Aso using Eq. (Le3)
T(%) = (C sinh Ch + i cosh Ch) A ( ). . (LeT)
Combining Egs. (4e6) apd (Le7) we abtain ”
28) = as) {g(8) + 50N, (148)
where .
. . £ sinh Ch + i cosh Ch
(&) = . cosh Ch * (4e9)

If we recall from Sec. 2 that we wish to determine #(x,0) it is
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clear from Eq. (lel) that oﬁr problem is now that of determining gz(x) and
hence §2( £), To determine §2( £) using Eqe (4e8) we shall use the Wiener-Hopf
technique. This technique has been used to treat similar problems (see for
instance (2, L 5]); consequently the analysis will only b1e briefly outlined
here, First é'l( £) is analytic in the upper half plane, (UHP), Im(£ ) & = aj
éz( £) 4is analytic in the LHP and £(£) is analytic in the UHP, The function
G(%) is analytic and non-vanishing in a strip containing the real axis. This
will be seen clearly at the end of this section where G(% ) is represented as
the quotient of two infinite products. It might be noted tﬁat though
C= (& 2, is)J“/ 2 is a multivalued function, G(%£) as defined by Eqe (Le9)
consists only of even terms and hence does not have any branch points, Assuming
for the moment that we can write G(%) as G (& )/G+( Z) where G (&) is
analytic and nen-vanishing in the LfIP, “and G+(-‘é )- is-ané.ly‘bic and non-t}anishing
in the UHP we can rewrite Eq. (Lhe8) as
2(£) 6,(%) - 6 (-52) §(£) = o(5) - & ()] 5 ()

I -+ (B) E,(8). (ke10)
The left hand side of this equation is analytic in the UHP, the right hand side
is analytic in the LHP and they agree in a common strip of analyticity. Hence
Eq. (Le10) defines an entire i\xﬁqtion E(%). We shall show shortly that
G (£)=0(5Y2) as |g]| e , I(£) <0 and G (%) =0 2) as
€] = e s Im(Z ) = 0, Using this and investigating order conditions at infinity

we can show that E(¥) = 0, consequently

g,(8) - {%%SZ «1} 5, (%) (ho11)

It is now necessary to determine _G‘”Z £) and G+(2 )o The splitting
of G(%) is done in a manner exactly analogous to that used by Heins in [}4]

and [5] o Using the infinite product representation of cosh 2z, (see [6]) we
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have )
M(Z) = cosh Ch = ZZ; {1 + Lo%h/(2n + 1)2n2}= (%) m(-¢), (h12)
where °° ) » h2 1 /2 o0 & ' _(i?h g
- 16 1 2n%l/n | .
m(&) ZI @ *(2n+1)2 2] *(2n+1)n ° - (he23)

We have inserted the exponentials to insure absoll;.te convergence of the infinite
products defining m(£€) and m(-%) in the UHP and LHP respectively. If we
write M(£) as M (& )/M“"(Z; ) it is.clear that M ( £) = m(€) has no zeros
or poles in the LHP. Similarly 1/M+(£) = m(- E,)‘ has no zeros or poles in the
UHP,

The function L(E) = C sinh Ch + 1 cosh Ch has zeros ab
Ch =2 i, n=0,l,‘.‘2 s ecey Where the B, are complex numbers lying in the first
quadrant. For n large they may be determined by the asymptotic relation
B, = nn + ih/nn + 0( EnnTz). We may write L(E) as

L(E) =1 W 1+ P-‘:'-;--—-} 11(&) 1( £ (Lolly)
n
igh

o\1/2 1/2
1UE) = {(1 . -1-;11-) 15*‘} {( mh h}e" iR, (L4.15)
Bo “ ) n=l ‘

Again we have inserted the exponentials in order to insure absolute convergence

where

n

in the appropriate half planes. If we write L(E) as L (£ )/L*( £) and take
1(g)=1(%), 1/L, (&) = i3(~-&) it is clear that L () is free of zeros
and poles in the ILHP and L+( £) -is free of zeros a.nd- poles in the UHP.

Consequently we have .

X@) | X(£)

G(g)=8_ L(£) e "1E) (L16a)
M.A(z) n(g) -
Xm X(é)

o(z) =S M(E) . 2 (1s160)

M,(&) u@e)

3
!u."
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We shall choose the factor exp {X (2)} introduced in Egs. (L.16a) and (h.léb)
in such a manner that G (2 ) and G (g) have algebraic behaviour as
|€£] — oo in the LHP and UHP respectively.

Po investigate the behaviour of G_(&) for Im(£) <0, |E|-» o
we first note that the terms involving ¢ may be neglected against unity for

,E] oo, Since ﬁn—; nm as n —»oo we have that G (£) dis of the order

2
eX(i)(l + 1% h/B ) T" (1 + w/n)e ~/n = eX(é)( i% h/p ){Tf 1+ w/n)e W/ }
n=1 . n=1
=2w/(2n+1,; oo -2W,

@. +* 2w/(2n+1)} /(2aL) 77 (L + 2w/n) e &
n=0 n=1l
where w = i&h/r. Now using the relation that

/M (w) =w effW ﬁ 1+ w/n)emW/n p
n=l

and Stirling?s asymptotic formula for the gamma function, (see [6]) we obtain

' 6_(5) = 0 {w2exp D((E)*rwlnh]},
for In(E) < 0, [&|~=»ee, So choosing X (£) = -wilnl = = (i£h 1n b)/n we
have that Gg(é,) = 0(% l/2) as ]E}-'-)oe s im(é) <0, A similar arg_ument will show
that () = 0(wY/2) for (£]—rw , In(E) = 0. With these order relations it is
not difficult to show that E(E) is zero as menbioned earliers and hence we
obtain Eq. (Loll) for Ez(i) where G (£) is defined by Eq. (L.16a)s In
particular it can be seen from Eq. (Lo16a) and the definitions of 1(E) and
m(&) that G (0) = | |

Using the usual inversion forsmula we have that

-1 igx (g (==1a) -1 d& ol
g,(x) =P T Tt (bo17a)
& oo
.1 (15X G.(-ia) cosh Ch - G«(£)X( &) d & (L4e17b)
2n G.',( 5: )G( é,) a-18
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In the limit as a-» O it is clear from Eq. (lL.17a), that gz(é‘) is not
gingular at the origing hence we may actually take the real axis as our path of
integration in evaluating gz(x). Of course we shall aqtua.-lly close our path of
integration in the UHP when x ® O and in the LHP when :x < 0, For the case

x » 0 it is convenient to use Ego (Le17b) for ;a;valuating gz(x). Since

6,(£) is non-vanishing in the URP, g2(x5 will be simply the sum of the
residues at the poles of the integrand which occur at dh = i{Bn, n=0,1,°°°°,

Carrying out this straight forward computation we obtain in the limit a = 0

oo

2 _.anx
(x) = 1 En e ) (La18)
TR <n4=—3(.%) (Bp + 1n-h®)G,(iay)

1/2
where @, = ([3121/112 + ig) o In the particular case that the fluid is ine-
compressible, i.e. & = 0, -ﬁn/an = h and Bqo (Ls18) becomes

. £ o ¥
g,(x) =h nzm WP + nt)G,(1a) * %" B, /he (he19)

5. Numerical Computations and Discussion

In this section we shall only be concerned with the case when the fluid
may be considered as incompressible, then gz(x) is given by Eq. {ks19). In [2]
a few values of gz(x) were computed for s = .01 and compared to the & = 0
casey the amplitude and phase lag in the gréund—water fluctuation for e = (0L
were slightly lower than for g = 0, Since g is however O(lO"h) we should

expect very little error in actually setbing .; = 0,

First let us determine when the shallow water theory solution given by
Egs. (3.5) may be expected to be valid. In order for ge(x) as given by
Eq. (Le19) to agree with the shallow water solution it is necessary that

a, ~ (i/h)l/ 2 as h«p 0, and. also that all the coefficients of {he higher
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order termsl

investigation of the 'branscéndental equation C sinh Ch + i cosh Ch that for
small h, [3°~ (ih)l/ 2 and hence a_~ (i/h)l/ 2. Also upon noting that for small
hy p~nn for n3 1, it can be seen from Eqe (Lel9) with the aid of the
representation of G+(ian) given in Eq. (5.1) that all the coefficients of the
higher order terms do approach zero as h - 6° Hence gz(x) as given by
Eg. (Y4e19) does approach the shallow water solution as h - 0. To determine
quantitatively when Eq. (3.5b) is valid we have computed B, and a, asa
function of h, Also the ratios of the wave length predicted by the shallow
water theory, A = 2n/(2HL)1/ 2 s to H and that of the fundamental mode,
hg = 2n/Im(ay); to H have been computed, These results are given in Table 1
and graphically in Fig. L. It appears from Fig. L that we may expect the
shallow water theory to be accurate over the entire range of x for h e l/h.
In order to compute gz(x) for various values of h it is necessary
to cast G-»(ian) into a form more suitable for numerical analysis than that
given by Eq. (Lel6a). This can be done in a straight forward manner by using
the infinite product representation of the gamma function. We obtain, when

g = 0, that

2 -1
(e ) = Pa o {(Ban /1) (Y [ @ ab] T (s

2ni(1 + B, /B,) P(2p,/7) (m=1 (1 + B /mn)

In any actual numerical computation the infinite products in Eq, (5.1) is, of
course, to be replaced by a finite numbers of terms (recall thét Bm—-» mn as

m = o ). The number of terms that is required to give an accurate answer is of

course dependent upon h and ﬁno

T : —
We shall refer to the term exp(e-aox) in Eqe (4019), which is the dominating

term as X —»o0 ; as the fundamental term,

must approach zero. It can be shown with little difficulty from an
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FIG. 4 DIMENSIONLESS WAVE NUMBER vs. h

A IS THE WAVE LENGTH PREDICTED BY SHALLOW WATER THEORY.
Mo IS THE WAVE LENGTH OF THE FUNDAMENTAL MODE PREDICTED
BY FINITE BOTTOM THEORY.
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In this paper gz(x) was computed for h =2 and h = 15 Values of
By for h=2 and h = 15 are given in Table 2. Let us first consider the case
h =2, Then the real parts of ao and @, are given by .59 and 1.65 respectively

hence we may expect the fundamental term to give an accurate result for x 3 2,

Carrying out the necessary computations we obtain

"Xy h =2 (5+2)

Pog n(x,t) = .61 e-.59x ei(mta,885=.292x)
a1 :

+ O(e
In Figs. 3 and b the amplitude and phase lag in the ground-water fluctuation have
been plotted., The extrapolation of the results to x = 0 are indicated by dotted
lines. Actually it is not difficult to obtain another term in the series, butb
unless particular quantitative information is desired for this value of h it
hardly seems necessary to do that. It might be mentioned that three terms were
more than sufficient in evaluating the infinite product in Eq. (5.1).

In the case that h'= 15, the fundamental term can only be expected to

be accurate for x & 7. We obtain

Pt n(x,t) = 07k e

«o10Mx ei(mt-l.éB-.OOTx) .0
9 : )

(" )5 h = 15, (5.3)

In order to obtain results valid for x =1 or 2 when h =15 would probably
require the computation of three or four terms of the series. However in view
of the results for h = 2 and these results for x 3 7 it is clear that the
amplitude curve for h = 15 will lie almost exactlylon the curve given by the
infinite  depth theo:yz(see Fige 2)e

It is interesting to noée that the shallow water theory and finite
depth theory prediet an exponential decay in x for the amplitude of the ground-

water fluctuationy this is in contrast to the algebraic decay, (like x"l),

4

2The amplitude and phase lég curves for h = ¢ have been taken from the results
given in [2].
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Predicted by the ‘infinite depth theory. Also the phase lag predicted by the
shallow water theory and finite depth theory continues to increase with x, while
that predicted by the infinite depth theory approaches n/2v with increasing x.
(This is clearly illustrated in Fige. 3). That gz(x) as gi*fen by Ege (Lel9)
approaches the infinite depth reéult g:'i.ven. in [2] as h—~»o0 , cannot be seen

egsily from (Le.19). However an examination of G(&) as given by Eq. (L.9)

shows that as Ch =dae , G(£) = i+ (2 + ia)l/ 2 which we might denote by

Go(£). This function is the one that occurs in C2J. It is interesting to

note that G_(£) has singularities of the branch point type, and in the limit

as & «=» 0 these singularities will occur at the origin. This explains the

algebraic behaviour of n(x;t) for h =, In contrast for any finite value of
h the strip of analyticity of G(£) is finite even when & ~# 0, and its

gingularities are poles rather than branch points; hence the exponential sort of

behaviour for n(x;t) for finite h.

A plausible physical explanation for the fact that the amplitude curves
for the ground-water fluctuation lie continuously below one another as h

degreases (see Fig., 2) is the following, Imagine that our porous medium and

fluid occupy the strip =« H<y <0, ~®<x <o, Suppose that we apply a

uniform pressure on the half line y = 0, =0 < x < 03 then fluid in the left

half strip will be forced through the gap - h <y <0 and the free surface

given originally by y = 0, x 3 0 will rise, The amount of fluid that can be

forced through this gap, and hence the effect tfnat the pressure variation can

have on the free surface, is proportional to the gap distance, h, So with

decreasing h the amplitude of the free surface fluctuation is lower and dies

out more quickly.
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1,00 o800k + i ,5702| . o800k + i o5702 8,88 11,09
2,00 1,1828 + i ,5832 o591k + 1 ,2916 6428 10,77
3.00 1.3739 + i JWTT5 JU5T9 # 1 L1592 4.85 13.16
5000 105033 + 1 ,3090 63007 + i 00618 3097 20003
10,00 15547 + 1 41569 01555 # i o0157 2,81 10,0l
15,00  1.5638 + i ,1046 <1043 + i L0070 2,29 59.83

TABLE 1.

) o ' 1/2

h is the dimensionless depth, A = 2a(2HL)

is the wave length for shallow

water theory, 7\.0 = 2nL/Im(ao) is the wave length of the fundamental mode for

finite bottom theory,
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1.1828 + i 5832
303106 + i 06h99
6.301Lh + 1 3277
941248 + i ,2138

“1@5638 + i oloh6
46886 + 1 ,323Y
748016 +  .57L9
10,8705 + i 49070
1347139 * i 1.3629
1661332 + i 1.,4236
18.96Ll + i 1,0572
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TABLE 2.
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